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Abstract. Properly quantifying the potential exposure of property to damages associated with storm 

surges, extreme weather, and hurricanes is fundamental to developing frameworks that can be used to 15 

conceive and implement mitigation plans as well as support urban development that accounts for such 

events. In this study, we aim at quantifying what was the total value and area of properties exposed to 

the flooding associated with Hurricane Florence. To this aim, we first generate a map of the maximum 

flood extent from the combination of the extent produced by FEMA and by means of spaceborne radar 

remote sensing. Such map is, then, used for estimating the value and area of properties exposed to 20 

flooding and the distance of such properties from permanent water bodies. Lastly, we study and 

quantify how the urban development over the past years and decades over the regions flooded by 

Hurricane Florence might have impacted the exposure of properties and population to present-day 

storms and floods, to account what colleagues are starting to address as the “expanding bull’s-eye 

effect” in which ‘‘targets” of geophysical hazards, such as people and their built environments, are 25 

enlarging as populations grow and spread. Our results indicate that the total value of property exposed 

was $52B, with this value increasing from ~ $10B (2018 USD) from the beginning of the past century 

because of the expansion of number of properties. We also found that, despite the slowing of property 

construction in the decade before Florence, much new construction was in proximity to permanent 

water bodies, increasing exposure to flooding. Ultimately, the results of this paper provide a tool for the 30 

understanding of the approaching reckoning that must take place between our continued development in 
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coastal areas and the flooding of those areas, which is estimated to increase because of projected 

increasing sea level rise, storm surges and strength of storms.  

1 Introduction and Rationale 

  35 

 The projected rise in sea level, increased floods and storm surge and associated consequences 

over the 21st century has the potential to do immense economic harm. The economic impact is 

particularly worrisome in the U.S. due to the fact that much of the most valuable real estate, densest 

communities, and most productive economic engines are situated disproportionately in coastal regions 

(Fu et. al., 2016; NOAA, 2013; Kildow et. al., 2014).  Generally speaking, sea level rise (SLR) is a long 40 

and gradual process that has generally not been thought of as a “now problem” but instead something to 

be prepared for and discussed as a future issue (Butler et. al. 2016). However, recent research has 

highlighted an ongoing negative economic signal associated with high-probability flooding events and 

real estate transactions in coastal communities that can be observed with historical data (see McAlpine 

and Porter, 2018; Keenan et. al. 2018; and Bernstein et. al. 2019). This suggests that SLR is a “now 45 

problem” and it is already producing meaningful negative economic consequences on coastal 

communities.  Furthermore, there is ample evidence suggesting that we are only seeing the first signs of 

a much more problematic issue both in terms of the flooding scale and the magnitude of associated 

economic losses (see Fu et al, 2016; Hallegatte et al., 2011; Bin et al., 2011; Bin et al. 2008; Parsons 

and Powell 2008; Michael 2007). Economic and financial experts often look at damaged areas over 50 

large regions, hence missing the details that are necessary to capture the impact of disasters on single 

unit houses or small areas (see Yohe et al., 1995; Darwin and Tol, 2001; Yohe et al., 1996; Yohe et al., 

1999). For example, a sea level rise of six feet would flood roughly 100,000 homes only in New York 

City, with a total value of $39 billion; a ten-foot rise would flood 300,000 homes and property with a 

value of almost $100 billion (UCSUSA, Accessed June 29, 2019). The equivalent figures for Miami are 55 

54,000 homes and property valued at $14 billion at risk with a six-foot rise and 130,000 homes and 

property valued at $32 billion for a ten-foot rise.  
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 Florence was one of the most devastating hurricanes in history as it combined storm surge, 

strong winds and extreme precipitation. It began as a tropical storm on 1 September, 2018 over the 

Cabo Verde Islands off the coast of West Africa and peaked as a Category 4 hurricane with winds up to 60 

140 mph before making landfall as a Category 1 hurricane on 14 September, 2018 over Wrightsville 

Beach, North Carolina. By 5 p.m. on Friday, 14 September, 2018 Florence was downgraded to a 

tropical storm and early on Sunday, 16 September, it diminished to a tropical depression, with winds of 

about 35 mph.  At least 51 people died as a consequence of flooding associated with rain records (up to 

3 feet of rain in some areas according to the Weather Service), leaving more than 400,000 houses 65 

without power and generating more than $24 billion in total damage 

(https://www.ncdc.noaa.gov/billions/events.pdf). The human cost of Hurricane Florence was a reminder 

of the power of such storms and these storms are likely becoming more impactful as their surge reaches 

further inland due to changing tracks, increased strength, and rising seas. The response of local 

communities to such events can be telling in terms of how the locals are dealing with these trends.  70 

Often times an event like Florence has unintended consequences of raising the awareness of the 

community to all types of flooding.  Such is likely the case in much of the recent research on real-estate 

market responses to higher-probability flooding associated with nuisance tidal flooding events. 

 

1.1 Sea Level Rise and the economics of flooding 75 

 

The previously cited work by McAlpine and Porter (2018) found that properties in Miami-Dade 

County at risk of frequent tidal flooding had lost over $430 million in potential property value relative 

to homes that were not a risk of repeated tidal flooding events.  Likewise, and also centered in the 

Miami-Dade region, Keenan et al. (2018) found that homes at lower elevations were being penalized on 80 

the market relative to homes at higher elevations.  In a more comprehensive analysis, the research by 

Bernstein et al. (2018) found a similar penalty for homes at risk of flooding from increases in SLR, but 

found that this penalty was primarily driven by investors and an uneven access to information 

associated with risk.  All three of these studies identify an increase in awareness of SLR related 

flooding events and all document the fact that this trend is relatively new (since about the middle of the 85 
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last decade). Of particular importance to the recent market response is the fact that increased probability 

seems to be an important driving force. In the work undertaken by Bernstein et al. (2019), the price 

penalty for homes at risk of flooding is explicitly driven by the sophistication of investors and their 

access to risk tools aimed at helping them to make decisions about property value, and long-term 

appreciation over time. McAlpine and Porter (2018) also found that risk associated with being impacted 90 

by a Category 1 hurricane is correlated with potential loss property value, but not the probability of 

being impacted by a higher Category storm.  In each of these cases, the research suggests that the real-

estate market is becoming more sensitive to the probability of damage associated with inundation from 

flooding events due to rising seas, storm surges, nuisance flooding and consequences of a changing 

climate.  95 

Several studies have also recently focused on assessing damages from hurricane Florence. 

Roberson et al. (2019) use overhead imagery, including synthetic aperture radar (SAR) and optical data, 

to study the impact of Florence related to livestock wastewaters and to crop health. Srikanto et al. 

(2019) study the spatial distribution of fatalities and associated demographics, indicating that 93 % of 

the affected buildings were residential structures. The proper quantification of the impact of Hurricane 100 

Florence (or more in general of extreme events) is not only helpful for properly addressing the recovery 

of the communities impacted by the event but also to provide tools to policy makers, urban planners and 

city managers that will ultimately guide them through the decision process of reducing the impacts of 

future events. If it is true, indeed, that climate change is and will be influencing the frequency and 

strength of storms and floods, it is also true that the impact associated with those events heavily depends 105 

on urban development, especially along the coast and in proximity of body waters. Factors such as 

population growth and the spatial distribution of new properties associated with such growth are key 

factors for accounting the risks and potential exposure to damage from extreme events.  

In this context, it is crucial to study how the urban development over the past years and decades 

might have impacted the exposure of properties and population to present-day storms and floods. For 110 

example, one of the most devastating hurricanes over the Carolinas before Florence was Hurricane 

Hugo, reaching the Carolinas on 10 September 1989, with winds up to 160 mph and a total estimated 

damage of $9.45 billion (1989 USD, equivalent to ~ $19B of 2018 USD) and 60 fatalities.  Addressing 
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questions such as: what would have been the impact of Hugo today or of Florence in the past? will shed 

light on the impact of urban development of properties exposure to such events. Unlike 1989, we have 115 

today improved observational and modeling tools that allow us to better estimate the maximum flood 

extent, a key parameter needed to estimate the potential exposure to damage of properties and other 

infrastructures. From a modeling point of view, hydrological and hydrodynamic models, in conjunction 

with improved digital elevation models and the ingestion of gage observation or observation of high 

water marks, offer the opportunity to generate estimates of maximum flood extent (FEMA, 2019).  120 

      

1.2 Purpose of this study 

 Despite recent studies have started to focus on the spatio-temporal variability of property values 

and human settlements in hurricane-prone areas (e.g., Huang et al., 2019) and on the market responses 

to increases in observed flooding events (e.g., McAlpine and Porter, 2019; Keenan et. al, 2018), no 125 

study, to our knowledge, has focused on the impact of urban development on the property exposed to 

Hurricane Florence. Addressing this point is crucial to start considering not only impacts due to climate 

change but also those related to the choices that our society makes to continue the expansion of urban 

areas, addressing what some researchers are calling the “bull’s-eye expanding effect” (Ashley and 

Strader, 2018). Our approach is complementary to those calculating the impact of potential floods under 130 

future, possible climate scenarios (e.g., sea level rise or storm surge is changing but the properties 

distribution remains the same). Ultimately, the merging of the knowledge of the spatio-temporal 

evolution of properties with future scenarios will allow to identify attributions, allowing to better 

estimate damage and risks and supporting urban planning and adaptation strategies. In this study, we 

also aim at understanding the usefulness of remotely sensed satellite data as a method for the 135 

identification of impacted areas and for delineating the maximum flood extent. Specifically, we report 

results concerning the mapping of the flood extent associated with Hurricane Florence estimated from 

SAR data and compare such extent with the maximum flood extent provided by FEMA. From that 

exposure, we are able to quantify the property value and total area exposed to Hurricane Florence by 

combining the flood extent coverage with a database containing publicly available property value 140 

attributes.  
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2 Data and Methods 

2.1 Sentinel-1 radar data and identification of inundated areas  
 

 From an observational point of view, spaceborne and airborne remote sensing (e.g., Schumann 145 

et al., 2011), as well as UAV-based approaches (e.g., Gebrehiwot et al., 2019), offer powerful tools to 

monitor flood extent (e.g., Domeneghetti et al., 2019; Kordelas et al., 2018; Shumann et al., 2018a, 

2018b, Giordan et al., 2018). Optical data can map the presence of surface water at relatively high 

spatial resolution and accuracy (e.g., Kordelas et al., 2018) but it is limited by the presence of clouds 

(Shumann et al., 2018). Datasets collected in the microwave region, such as those collected by Synthetic 150 

Aperture Radar (SAR), are not limited by the presence of clouds (Shumann et al., 2018, Manavalan, 

2017; Huang et al., 2018). In this case, the recent launch of Sentinel-1 ESA sensors in September 2014 

(Sentinel-1A) and April 2016 (Sentinel-1B, https://sentinel.esa.int/web/sentinel/missions/sentinel-1) 

allows the mapping of flood extent at unprecedented temporal and spatial resolutions. The combination 

of the two sensors provides a nominal 6-day repeat cycle over the equator and 12-day repeat cycle over 155 

North America (Torres et al., 2012). For the purpose of this study, we downloaded Sentinel-1 data from 

the National Aeronautics and Space Administration Alaska Satellite Facility (NASA/ASF, 

https://earthdata.nasa.gov/about/daacs/daac-asf). More information on the Sentinel-1 sensors can be 

found at https://sentinel.esa.int/web/sentinel/missions/sentinel-1. 

 Limitations in the case of SAR can arise from features mimicking the behavior of flooded 160 

regions (such as some roads or airport runways) and from the presence of natural or manmade structures 

(such as trees or buildings) that tend to mask the signal associated with the presence of water on the 

surface (e.g., Shumann et al., 2018; Notti et al., 2018). SAR data has been shown to be able to detect the 

presence of flooded areas by means of approaches ranging from automated ones (e.g., Bazi et al., 2005; 

Moser and Serpico, 2006; Huang et al., 2018; Twele et al., 2016) to sophisticated techniques, such as 165 

active contour models (ACM) or change detection (e.g., Landuyt et al., 2019), to simpler ones such as 

threshold-based approaches (e.g., Shumann  et al., 2018). In this study, we detect flooded areas from 

SAR assuming that the distribution of the recorded backscattering values can be approximated with a 

bimodal distribution in which dry (wet) pixels belong to the right (left) normal distribution (e.g., Otsu, 
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1979; Chini et al., 2017). The threshold value separating the two distributions can be computed through 170 

the minimization of a cost function that reflects the amount of overlap between the Gaussian density 

functions of the foreground and background classes (e.g., Kittler and Illingworth, 1989). As an example, 

Figures 1a and b shows maps of, respectively, backscattering coefficient values σ0VH (Figure 1a, VH 

polarization) obtained by Sentinel-1A collected on 2 September, 2018 at 23:05:52 UTC and land use 

land cover attributes obtained from the National Geospatial Data Asset (NGDA) Land Use Land Cover 175 

(LULC) dataset (https://www.sciencebase.gov/catalog/item/581d050ce4b08da350d52363, Figure 1b) 

from the National Land Cover Database (NCLD, e.g. Jin et al., 2011; Xian et al., 2011) over a subset 

region where flooded due to Florence occurred. Specifically, we use the “Open Water - All areas of 

open water” class (Class # 11) to map the presence of permanent water bodies. The original 30 m 

dataset is projected on the same coordinate system as the radar images (WGS84) and it is resampled to 180 

10 m through bilinear interpolation to match the SAR data spatial resolution.  Figure 1c shows the 

histogram (and the fitted bimodal distribution) of the backscattering data in Figure 1a, together with the 

values of the mean and standard deviation of the two normal distributions, the computed threshold 

coefficients as well as the Ashman coefficient (See Suppl. Material, Ashman, 1994). This coefficient 

allows to automatically quantifying the degree of separation between the two Gaussian distributions: the 185 

higher the Ashman coefficient the more the two normal distributions are separated. Here, we adopt the 

minimum value of 2 on the Ashman coefficient to ensure separability (Chini et al., 2017). For those tiles 

where the Ashman coefficient is below 2, we use the mean values of the coefficients surrounding that 

tile. We assess also the use of two ways to compute the threshold value on the radar backscattering 

coefficients: the first one (σ0Thr1) is obtained from the identification of the value where the two fitted 190 

Gaussian distributions intersect; the second threshold value is computed as σth2 = µ2 - 2*σ2, with µ2 and 

σ2  being, respectively, the mean and standard deviations of the “dry” distribution. More details about 

the SAR-based approach and its assessment are reported in the Supplementary Material. 

 Once flooded areas are identified, permanent water bodies are excluded using features from the 

United States Fish and Wildlife Service's National Wetlands Inventory and the United States Geological 195 

Survey's National Hydrography Dataset (https://fwsprimary.wim.usgs.gov/wetlands/apps/wetlands-

mapper/). Whenever available, digitized water features from local sources are incorporated in order to 
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create the most detailed water boundary delineations possible.  To produce the final file used to mask 

permanent water, the classification fields representing deep existing water (“Estuarine and Marine 

Deepwater”), Ponds (“Freshwater Ponds”), Lakes, and Rivers (“Riverine”) were merged into a single 200 

mask.  The “Estuarine and Marine Wetland”, “Freshwater Emergent Wetland”, and “Freshwater 

Forested/Shrub Wetland” were not included in the original mask as these represent land classification 

types that are not permanently wet.   

 

2.2 FEMA Maximum water extent during Florence 205 
 

We supplement the radar-derived flood extent with the FEMA's High Water Mark-based Depth 

Grids and Inundation Polygons from observed and collected Hurricane Florence data. High Water 

Marks (HWM) are point data collected using high resolution Real Time Kinematic (RTK) GPS systems 

or other methods. HWM points represent the highest extent of riverine flood or coastal storm surge 210 

inundation. The raw data is available at the FEMA Natural Hazard Risk Assessment Program (NHRAP) 

site and were downloaded for all basins available per FEMAs collection efforts following the hurricane 

event (https://data.femadata.com/FIMA/NHRAP/Florence/).    

The FEMA Maximum Water Extent is distributed as a GIS raster file created to represent the 

extent of riverine or coastal storm inundation following larger flooding events. The file is created as a 215 

derived product following the creation of the Maximum Depth Grids raster file, which is created using 

FEMA HWM data and FEMA’s Digital Flood Insurance Rate Map (DRIRM) Base Flood Elevations 

(LIDAR based elevation data). Using those datasets, a simple grid is obtained from interpolation to 

estimate the height of water at any given point between HWM based on base elevation.  From this, we 

extracted a secondary file measuring only the extent of inundation from the storm surge. The FEMA 220 

dataset is distributed as an ARCGIS® geodatabase (.gdb format) and it is geolocated and rasterized at a 

spatial resolution of 10 m to match the spatial resolution of the SAR data. More information on the 

FEMA approach for estimating maximum flood extent can be found at 

https://data.femadata.com/FIMA/NHRAP/Florence.      
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2.3 Property database 225 
      

Property value data is compiled from each individual property's county assessor in the form of 

the property tax assessed value. The data were obtained from a third party provider, ATTOMTM Data 

Solutions, which provides high quality parcel level information on all properties in the United States 

and in a value added format (https://www.attomdata.com). The process by which the data are compiled 230 

relies solely on publicly available data and the processing, cleansing, standardizing of that data in order 

to make it available in a user-friendly format. The data used in this analysis include the property's last 

recorded assessment value for all properties within the states of North and South Carolina.  Each 

county's assessment process varies and, as such, the data are subject to known potential limitations 

associated with the timing and frequency of home assessments undertaken by local county officials in 235 

which the property is located. However, the data also give us the best available comprehensive look at 

tax base value in a geo-located format for comparison to our storm surge coverage file. Beside property 

values, the database also contains the year when each property was built, which we use for our 

expanding bull’s-eye effect analysis.   

3 Results and discussion 240 

3.1 Assessment of remote-sensing derived areas vs. FEMA maximum water extent 

 Inundated areas (including permanent water bodies) obtained from Sentinel-1 data are reported 

as blue regions in Figure 2a, together with the maximum water extent estimated by FEMA (red areas). 

We used a total of 12 Sentinel-1 images collected between 14 September and 19 September, 2018 and 

whose footprints are shown in the inset in the top left corner of Figure 2b. Specific names and 245 

acquisition times of the radar images are reported in the Supplementary material for reader’s 

convenience. We used the 12 images in order to maximize the covered area and to account for the 

temporal evolution of surface water after the landfall of Hurricane Florence associated with heavy, 

persisting rainfall.  

The comparison between the maximum water extent estimated by FEMA and the water extent 250 

mask obtained from Sentinel-1 indicates a matching score (defined here as the percentage of flooded 
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pixels identified by Sentinel-1 with respect to the total number of flooded pixels identified by FEMA) 

of 11.3 % and a commission error (defined as the relative percentage number of pixels when Sentinel-1 

detects flooded areas but FEMA does not with respect to the total number of FEMA flooded pixels) of 

9.2 %.  When considering the two maps obtained from the two approaches, we have to remember that 255 

FEMA water extent map is based on a combination of modeled and measured quantities, as explained 

above and it is, therefore, possible that some areas that were included in the radar images were not 

included in the FEMA maps as they occurred away from the ocean water. As an example, Figure 3 

shows the maximum water extent from FEMA (red) together with the water extent derived from 

Sentinel-1 data nearby the town of Bennetsville, NC (34.6174° N, 79.6848° W). Green dots show the 260 

distribution of properties from our database. If on one side Sentinel-1 is missing to capture the 

maximum water extent estimated by FEMA, it is also true that the radar sensor is suggesting the 

presence of flooded areas (mostly agricultural fields) that are not included within the FEMA extent. Our 

analysis of the Sentinel-1 backscattering coefficients (not shown here) indicates that the backscattering 

values recorded for those regions where flood was identified were relatively low (e.g., well below the 265 

threshold value and on the order of ~ -20 dB or below), strongly suggesting that those were inundated 

areas. We argue that for such areas the FEMA approach might not have captured those flooded areas, 

either because of limitations related to the hydrodynamic model used in the approach or because of the 

lack of collection of in-situ data. Another factor complicating the comparison between Sentinel-1 and 

FEMA inundated regions is that the acquisition times of the radar images do not coincide with the time 270 

of the maximum water extent associated to storm surge. Figure 4a shows the time series of the water 

height (mean sea level in meters) for the ocean tide gauge located in Wrightsville Beach, NC (id 

#8658163), where Hurricane Florence made landfall. Maximum water height was reached on the same 

day around 15:00 UTC. The image also shows the acquisition times of the Sentinel-1B (14 September, 

2018, 11:15:05, UTC) and Sentinel-1A (14 September, 2018, 23:05:48, UTC) as vertical, dashed lines, 275 

indicating that the images were, unfortunately, acquired before and after the maximum water height. On 

the other hand, river gages data show that the maximum water discharge and gage heights inland 

occurred a few days after hurricane Florence made landfall, because of the heavy precipitation. In this 

regard, Figures 4b and 4c show, respectively, the daily discharge (in cubic feet per second) and daily 
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gage height (in feet) recorded at the river gage station of Lumberton, NC (34.6182° N, 79.0086° W), 280 

located about 150 km inland. The data shows the peak discharge and water heights late in the evening of 

17 September, 2018.  For this area the radar data were collected when the tide gage recorded peak 

values, confirming the usefulness of this tool to capture flooding that FEMA might have been missing 

that. As a further example, we show in Figure 5 the flooded areas detected by Sentinel-1 (blue filled 

regions) on 19 September, 2018 nearby Pasley, Duplin County, NC (34.7854° N, 77.9005° W) and a 285 

photograph of the same area collected on 18 September, 2018 by the NOAA Remote Sensing Division 

to support emergency response requirements 

(https://storms.ngs.noaa.gov/storms/florence/index.html#7/35.360/-77.820). Most of the flooded areas 

identified by the NOAA photograph are properly captured by Sentinel-1, with differences between the 

two also due to the different acquisition times. Nevertheless, for this area, the FEMA map does not 290 

indicate any flooding, confirming the complementary nature of the radar dataset. 

 Given the above considerations, we merged the FEMA and Sentinel-1 flood extent maps to 

generate a maximum composite flood extent map that will be used to assess the property exposure to 

Hurricane Florence flooding.  We will refer to this dataset simply as the “maximum flood extent” in the 

remaining sections of the manuscript.  295 
  

3.2 Exposure of property to Hurricane Florence flooding 

 Figure 6 shows the spatial distribution of the properties within our database overlaid with an 

image of the eye of Hurricane Florence when it made landfall. Our results indicate that the total area of 

properties affected by the maximum flood extent water was 70,964,700 m2, being 17.55 % of the total 300 

area within our database. When considering only the flood extent estimated by Sentinel-1, the total area 

of properties affected by the estimated flood extent reduces to 3.2 %, corresponding to 12,939,432 m2. 

In order, to quantify potential biases associated with co-registration issues or resampling procedures, we 

computed the number of properties exposed to the extent of our permanent body water dataset. Our 

analysis shows that less than 0.2 % of properties was overlapping with the permanent body waters. 305 

Consequently, we removed these properties from our analysis. 
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 We estimate a total property value exposure of $52,079,520,584 (corresponding to ~ 9.5 % of 

the total property value within our database), of which $9,437,931,512 when considering only Sentinel-

1. The exposed property value identified by Sentinel-1 but not by FEMA was $3,278,098,601. Beside 

the limitations discussed above, the relatively small exposure area and property values obtained with 310 

Sentinel-1 are also due to missing detection of flooded regions in urban areas by radar (e.g., Notti et al., 

2018). Indeed, the basic assumption for detecting flooded areas by Sentinel-1 is violated by the presence 

of dense vegetation or buildings. The radar signal will, in this case, bounce on the vertical structures 

(e.g., buildings and trees) after being reflected by the water surface, increasing the amount of energy 

reaching the radar receivers instead of reducing it and, therefore, increasing the value of the 315 

backscattering coefficient. In these cases, therefore, despite the presence of flooding on the surface, the 

backscattering values will not belong to the “wet” Gaussian distribution and the masking effect of 

buildings and trees will misclassify those areas as dry (e.g., Schumann, 2018a, 2018b). Another reason 

for the underestimation of property exposure derived from Sentinel-1 data can be seen in Figure 3, 

where it appears evident that Sentinel-1 is detecting flooding over rural and agricultural areas (and 320 

FEMA is not) where the number of properties is relatively smaller than highly density populated areas. 

 In Figure 7 we report the distribution of the number of properties exposed to flooding within our 

database as a function of property value. A power law function as reported in Eq. 1 

 

Y = a*xn            (1) 325 

 

fitting the histogram is also plotted as a dashed, black line with a and n obtained from the fitting as a = 

1.9544*106 and n = -1.1216. The power law function here selected was chosen after testing several 

functions (e.g., exponential decay, logarithmic, etc.) as the one showing the highest regression 

coefficient (R = 0.99). We remind to readers that the property value used to compute the coefficients is 330 

expressed in thousands of dollars. According to Zillow©, the median home values in North Carolina 

and South Carolina are, respectively, $184,200 (North Carolina) and $166,300 (South Carolina) with a 

median price of homes of $196,600 in the case of North Carolina (https://www.zillow.com/nc/home-

values/) and $178,800 for South Carolina (https://www.zillow.com/sc/home-values/). We use these 
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estimates to set to $200k the median price within our database and evaluate the number of properties this 335 

value using Eq. 1, finding that 40 % of the properties exposed to Hurricane Florence flooding were below 

the selected value. The properties valued between $200k and $500k account for another 25 % whereas the 

properties with values between $500k and $1M account for another 25 %. As a reference, the total number 

of properties valued below $200k represent ~ 50 % of our database, those between $200k and $500k are ~ 

25 % and those between $500k and $1M roughly 15 %.  340 

 Distance from water bodies, especially coastal and riverine bodies, is also a useful indicator of 

properties vulnerability and potential exposure in hurricane prone areas. Therefore, we expanded our 

analysis to consider the distance of the properties that were flooded during Florence within our database 

from permanent water bodies (Figure 8). Values along the x-axis in the plot are obtained as the 

minimum distance from any of the closest element of the permanent water bodies mask (e.g. ocean, 345 

rivers, lakes) to each property in our database.  The figure also shows the exponential decay function 

fitting the histogram and the fitting parameters. From this, we estimate that ~ 95 % of the number of 

properties exposed to flooding fell within 10 km from body waters. This number increases when 

considering only the distance from the ocean because of the inland flooding associated with heavy 

precipitation. We, therefore, use the distance of 10km as a maximum distance to be considered for 350 

studying the relationship between new properties, their distance from water bodies and the exposure to 

the Florence flood extent.  

3.3 Impact of expansion of urban areas on property exposure 

 As mentioned in the Introduction, the exposure to floods and other extreme events depends not 

only on the geophysical hazard but also on how urban growth and infrastructures have been, are and 355 

will be evolving in the areas at risk. This concept is well synthesized in what has been named “the 

expanding bull’s-eye effect” (Ashley and Strader, 2016), arguing that ‘‘targets’’—people and their built 

environments— of geophysical hazards are enlarging as populations grow and spread. In order, to 

investigate the impact of the expanding bull’s-eye effect on the property exposed to the flooding of 

Hurricane Florence, we calculated what would have been the property area and values exposed to the 360 

Florence flood should that have occurred 10, 50 or 100 years ago by using the information contained 
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within our database on the years when properties were built. For the purpose of this analysis, we clarify 

that we are assuming the same sea levels and topography of today.  

 Figure 9 shows the spatial distribution of the properties within our database that were built 

during the a) 1800 – 1900, b) 1900 – 1950, c) 1950 – 2000 and d) 2000 – 2018 periods. We considered 365 

the first period as a 100-year one (Figure 9a) because of the relatively small number of properties that 

were built then. Most of the development between 1900 and 1950 (Figure 9b) occurred inland and along 

the coast north of Wilmington, with a relatively small number of new properties built close to water 

bodies (either rivers or ocean). An explosion in new properties occurred between 1950 and 2000 (Figure 

9c), likely as a consequence of the economic stimulus following World War II. The period 2000 – 2018 370 

shows a relatively smaller number of new properties with respect to the previous periods (Figure 9d). 

This is partially related to the shorter period considered for the last panel. However, our analysis 

performed on the 10-year period of number of properties built within our database (Figure 10) shows 

that before 2010 the number of houses built had been increasing exponentially (Y = 5e-22 * exp0.0314*X, 

R = 0.99, with X being the year) and that the number of new properties after 2010 drastically dropped, 375 

reaching values similar to those observed before the 1950s. This might be due to the 2008 “house crisis” 

that occurred during that period.  

 Figure 11 shows the time series of total value of exposed property (in 2018 $B). The inset shows 

the relative change of the exposed area and value between two consecutive time steps (10 years). 

Consistent with the results discussed above, a relatively small increase in the exposed property value 380 

occurs before the 1940s (from ~ $10B to ~ $12B). The increase becomes substantial after 1940s, driven 

by the building of new properties (Figure 9), reaching a maximum value of exposed property of ~ $52B 

in 2018. We fitted the increase in exposed property value after 1900 with an exponential function (Y = 

a*expbX) and computed the coefficients providing best fitting (a = 1.0627*1e-13 , b =  0.167, R = 0.97). 

The maximum relative increase is reached around the year 2000 with a relative increased exposed value 385 

of ~ $8B between two successive decades. After then, the relative change in exposed property values 

decreases to values close to those obtained in the early 1950s.  

 As mentioned above, distance from permanent water bodies can play a critical role in terms of 

exposure, with flooding due to Hurricane Florence reaching properties that were up to ~ 10 km from the 
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closest water body. Therefore, we further studied how the property value evolved as a function of the 390 

distance from water bodies between 1800 and 2018. As an example, Figure 12 displays the distribution 

of properties built during different periods in proximity of Wrightsville beach, where hurricane Florence 

made landfall, highlighting the expansion of urban areas along the coasts and water bodies especially 

between 2000 and 2018. Figure 13 shows the total value of exposed properties within our database as a 

function of distance from water bodies between 1800 and 2000 (using a 25-year time step) and for the 395 

period 2000 – 2018. As it is possible to observe from the figure, the curves referring to early periods 

reach a plateau within a relatively short distance than those referring to later periods, with the saturation 

values (e.g., the value when the curve becomes flat) being of the order of 1500m in the case of the 1975 

– 2000 period. Interestingly, the period 2000 – 2018 does not show a plateau but the exposed property 

values continue to increase as the distance from water bodies increase. Therefore, despite the most 400 

recent decades were characterized by a relatively smaller number of new properties (Figure 10), the 

potential exposure to Florence of such properties was higher because of the higher number of the 

exposed properties close to body waters.  

4 Conclusions 
      405 

Increased flooding associated with sea level rise, storm surges and other extreme events has the 

potential to disrupt economically many areas around the world, with most of valuable real-estate, 

densest communities and most productive economic engines situated in coastal regions. The specific 

goal of our study was to quantify the exposure of properties to the flooding associated with Hurricane 

Florence that hit the Carolinas in September 2018 and to study how the spatio-temporal evolution of 410 

new properties during the past century and most recent decades has impacted the property exposure. 

Indeed, if it is true that risk and exposure to events arise from the geophysical processes (e.g., 

hurricanes, rainfall, etc., e.g., Stone and Cohen, 2017), it is also true that the choices associated to where 

to build new properties can have a profound effect on the impacts and risks through the so-called 

“expanding bull-eye’s effect”. Despite these considerations appear to be obvious, very few studies have 415 

focused on this aspect and, to our knowledge, this is the first study focusing on this for Hurricane 

https://doi.org/10.5194/nhess-2019-209
Preprint. Discussion started: 8 July 2019
c© Author(s) 2019. CC BY 4.0 License.



16 
 

Florence. In order, to properly quantify the exposure of properties to Florence flooding, we developed a 

maximum flood extent map from the combination of the FEMA maximum extent map generated 

through the merging of high water marks and the outputs of a model and the flooded areas detected by 

means of spaceborne radar data acquired by the ESA Sentinel-1 sensors. We found that Sentinel-1 data 420 

underestimates the maximum flood extent with respect to FEMA because of both intrinsic (e.g., loss of 

sensitivity to flood over dense urban areas) and extrinsic reasons (e.g., acquisition time not overlapping 

with the timing of maximum flood extent). However, we also found that radar data can detect flooding 

over rural and agricultural areas that is not detected by FEMA, hence filling the potential gaps of the 

FEMA approach. We, therefore, combined the two maps to obtain an optimal maximum flood extent 425 

map that we used for our quantitative analysis.  

We found that the total value of property exposed to flooding was ~ $52B and that this value has 

increased exponentially from ~ $10B (2018 $US) in the early 1900s. This is due to the increase in the 

number of properties that came to a halt at the beginning of the 2000s, likely as a consequence of the 

2008 housing crisis, when the number of new properties built after 2010 was almost half of those built 430 

only a decade before. Despite this, the exposure to Florence flooding for those properties built after 

2000 continued increasing, because of the number of new properties built within proximity of 

permanent water bodies and coastlines.  

 Our work cannot only provide new insights for policy makers and city planners but it also does 

provide a tool to better estimate how the property market will respond to future disasters. Recent work 435 

(e.g., McAlpine and Porter, 2018;  Keenan et al., 2018) has found that homes at lower elevations were 

being penalized on the market relative to homes at higher elevations and that houses exposed to sea 

level rise (SLR) sell for approximately 7% less than observably equivalent unexposed properties 

equidistant from the beach (Bernstein et al., 2019). For our future work, we plan to expand our analysis 

to other modern-day (e.g. Irma, Michael, Katrina and Sandy) and historical (e.g. Hugo in 1989) 440 

hurricanes to address similar questions to those addressed in this study. Moreover, we plan to improve 

the detection of maximum flood extent through the implementation of machine-learning techniques 

combining radar maps with tide gage interpolated data and other ancillary information. Lastly, the 

combination of the knowledge on how property distribution changed along the years in conjunction 
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with outputs of physical or probabilistic models that can separate the different contributions associated 445 

to flood due to SLR, storm surge and rain will allow to properly quantify what is the impact of the 

different components of the climate-economic system on the total exposure and, eventually, damage. 

This will provide a crucial tool for policy makers, governments, citizens and those who are, rightly, 

interested in quantifying the impact of climate change on the economic and house markets.  

 450 
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5 Figures 

 615 
(a)       (b) 

 
(c) 

Figure 1 Map of VH backscattering coefficients obtained from Sentinel-1 collected on 2 September, 2018 at 23:05:52 UTC over a 
region impacted by Florence b). Same as a) but showing land cover attributes from the National Geospatial Data Asset (NGDA) 620 
Land Use Land Cover (LULC) dataset data record (https://www.sciencebase.gov/catalog/item/581d050ce4b08da350d52363). Here, 
water is represented as medium blue. c) Histogram and fitted bimodal distribution of the backscattering data in a). In the panel, 
the mean and standard deviation of the two normal composing the bimodal distributions are reported, together with computed 
thresholds and the Ashman coefficient.  
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Figure 2 Map of inundated areas estimated by FEMA (red) and by the Sentinel-1 radar images (blue). The inset in the top left 
corner shows the footprint of the several radar images to create the composite water extent map. Acquisition times and other 
details concerning the radar images are available in Supplementary material.  

  630 

a) 

https://doi.org/10.5194/nhess-2019-209
Preprint. Discussion started: 8 July 2019
c© Author(s) 2019. CC BY 4.0 License.



26 
 

      

 
Figure 3 Map of inundated areas estimated by FEMA (red) and by Sentinel-1 (blue) near the town of Bennetsville, SC (34.6174° N, 
79.6848° W). Green dots represent the locations of properties for this area.  

  635 
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(a) 

 
(b)        (c) 640 

 

Figure 4 Time series of a) tide gage mean sea level height (meters) recorded at Wrightsville Beach, NC and b) daily discharge 
(cubic feet per second) and c) daily gage height (feet) recorded at Lumber river (USGS gauge 02134170), NC between 1 September 
and 30 September 2018. In a) blue line refers to predictions where green squares to verified values. In a) data and plot was 
obtained from https://tidesandcurrents.noaa.gov/. For data plotted in b) and c) we obtained data and graphs from 645 
https://waterdata.usgs.gov/. In a) and c) we also report as dashed vertical lines the acquisition times of the available Sentinel-1 
data.  
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(a) 650 

 
(b) 

Figure 5 Flooded areas detected by a) Sentinel-1 data (light blue filled regions) on 19 September, 2018 nearby Pasley, 
Duplin County, NC (34.7854° N, 77.9005° W) and b) photograph of the same area collected on 18 September, 2018 by 
NOAA (https://storms.ngs.noaa.gov/storms/florence/index.html#7/35.360/-77.820). Here, dark blue regions show 655 
flooded areas.  
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Figure 6 Distribution of properties within our database used to estimate the exposed property damage to Florence Hurricane. An 
image of the Hurricane Florence making landfall is also reported as a reference (Hurricane image courtesy: Cyclocane).  660 
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Figure 7 Distribution of the number of properties exposed to flooding as a function of property value. Dashed line represents the 
power law curve fitting the distribution. The parameters of the fitting power law function are reported in the top right section of 
the figure.   665 
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Figure 8 Number of properties as a function of distance from water bodies.  Dashed line represents the power law curve fitting the 
distribution. The parameters of the fitting power law function are also reported in the top right section of the figure. 

 670 
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(a)      (b) 

 675 
(c)      (d) 

Figure 9 Spatial distribution of the properties within our database that were built during the a) 1800 – 1900, b) 1900 – 1950 , c) 
1950 – 2000 and d) 2000 – 2018 periods.  
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 680 
Figure 10 Number of properties (in thousands) built within our data record during different decades (red bars, left axis) and 
relative change between two consecutive periods (blue line, right axis). Note that the number of properties built between 1800 and 
1900 are aggregated as a single value because of the small number of properties built during that period.  
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Figure 11 Time series of total value of exposed buildings (in $B) to the maximum flooded extent region between 1800 and 2018. 
The inset shows the relative change of the exposed area and value between two consecutive time steps (10 years). 
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Figure 12 Distribution of properties (red dots) built a) before 1900, b) between 1900 and 1950, c) between 1950 and 200 and d) 695 
between 2000 and 2018 in proximity of Wrightsville Beach, NC where Hurricane Florence made landfall. Dark blue shows 
permanent body waters where light blue shows the flooded areas.  
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Figure 13 Total value within our database of properties exposed to flooding as a function of distance from water for the different 
periods reported in the inset.   
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